SET THEORY HOMEWORK 3

Due Monday, March 20.

Problem 1. Show that if κ is a regular uncountable cardinal in L, then L_{κ} satisfies all the axioms $ZF \setminus Powerset$.

Problem 2. Suppose that $M \prec L_{\omega_1}$. Show that M is transitive. (Hint: for $X \in M$, take the \prec_L -least onto $f : \omega \to X$. Show that f is definable in L_{ω_1} from X and use this to show that $f \in M$. Also show $\omega \subset M$. Use these to prove that range of f is a subset of M)

Problem 3. Let κ be a regular uncountable cardinal.

- (1) Suppose that $\tau < \kappa$ and $\langle C_i | i < \tau \rangle$ is a family of club subsets of κ . Show that $\bigcap_{i < \tau} C_i$ is also a club subset of κ .
- (2) Suppose in addition that κ is inaccessible. Show that $\{\tau < \kappa \mid \tau \text{ is a cardinal }\}$ is club in κ . Show that $\{\tau < \kappa \mid \tau \text{ is a regular cardinal }\}$ is not a club.

Problem 4. Suppose that $\mathcal{F} \subset \mathcal{P}(\kappa)$ is a κ -complete normal ultrafilter on κ . I.e. \mathcal{F} satisfies the following:

- for all $A \subset \kappa$, $A \in \mathcal{F}$ or $\kappa \setminus A \in \mathcal{F}$,
- if $\tau < \kappa$ and $\{A_{\xi} \mid \xi < \tau\}$ are sets in \mathcal{F} , then $\bigcap_{\xi < \tau} A_{\xi} \in \mathcal{F}$.
- for all regressive functions $f : \kappa \to \kappa$ (regressive means that $f(\alpha) < \alpha$ for all α), there is $\gamma < \kappa$ such that $f^{-1}(\gamma) := \{\alpha < \kappa \mid f(\alpha) = \gamma\}$ is in \mathcal{F} .

Show that \mathcal{F} is closed under diagonal intersections of length κ .